equação Graceli estatística tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
Na física, particularmente na teoria quântica de campos, a Equação de Proca descreve o comportamento quântico de uma partícula fundamental com massa não nula e spin igual a 1 (ver bosão vetorial) num espaço de Minkowski.
A equação de Proca foi nomeada em homenagem ao físico romeno Alexandru Proca.
Definição
Dada a função de Lagrange de densidade definida por
equação Graceli estatística tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
A equação acima pressupõe a assinatura métrica , onde é a velocidade da luz e é constante reduzida de Planck.
A equação de Euler-Lagrange de movimento para este caso, também chamada de equação de Proca é:
Na física, as equações de Maxwell no espaço-tempo curvo governam a dinâmica do campo eletromagnético no espaço-tempo curvo [1] (onde a métrica não pode ser a métrica de Minkowski) ou quando se usa um sistema , não necessariamente cartesiano, arbitrário de coordenadas. Estas equações podem ser vistas como uma generalização das equações de Maxwell, que são normalmente formuladas nas coordenadas locais[nota 1] do espaço-tempo plano. Entretanto porque a relatividade geral dita que a presença de campos eletromagnéticos (ou energia/matéria em geral) induzem curvatura do espaço-tempo, as equações de Maxwell no espaço-tempo plano devem ser vistas como uma aproximação.
Campo electromagnético
O campo electromagnético[2] é um tensor antissimétrico covariante de classe 2,[3] que pode ser definido em termos de potencial electromagnético por
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Para verificar que esta equação é invariante, podemos transformar as coordenadas (tal como descrito no tratamento clássico de tensores)
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Esta definição implica que o campo electromagnético satisfaz
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
que incorpora a lei de indução de Faraday e lei de Gauss[4] para o magnetismo. Isto é demonstrado por
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Embora parece ter 64 equações em Faraday-Gauss, elas realmente reduzem-se a apenas quatro equações independentes .[5] Utilizando a antisimetria do campo electromagnético pode-se reduzir a uma identidade (0 = 0) ou tornar redundante todas as equações, com excepção para aqueles com λ, μ, ν = 1,2,3; ou 2,3,0; ou 3,0,1; ou 0,1,2.
A equação de Faraday-Gauss é por vezes escrita
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde o ponto e vírgula indica uma derivada covariante, vírgula indica uma derivada parcial, e colchetes indicam anti-simetrização (Veja Gregorio Ricci-Curbastro).[6] A derivada covariante do campo eletromagnético é
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde Γαβ γ é o símbolo de Christoffel que é simétrico em seus índices mais baixos.
Em Teoria Quântica de Campo, o esquema de subtração minimal, ou esquema MS, é um esquema de renormalização usado para regularizar os infinitos que surgem em cálculos perturbativos em ordens superiores à dominante. O esquema, sugerido independentemente por 't Hooft (1973) e Weinberg (1973), consiste em absorver apenas a parte divergente das correções radiativas nos contra-termos (do inglês counter-terms).
O esquema de subtração mínima modificado, ou esquema MS-barra (), é semelhante ao anterior, mais é amplamente utilizado. Este esquema absorve também a parte divergente mais uma constante universal que surge em computações dos diagramas de Feynman nos contra-termos. Ao usar a regularização dimensional, isto
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
////// é, , o método é implementado redimensionando também a escala de renormalização:
equação Graceli estatística tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
////// , onde é a constante de Euler-Mascheroni .
equação Graceli estatística tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Comentários
Postar um comentário